Tighter and Convex Maximum Margin Clustering
نویسندگان
چکیده
Maximum margin principle has been successfully applied to many supervised and semi-supervised problems in machine learning. Recently, this principle was extended for clustering, referred to as Maximum Margin Clustering (MMC) and achieved promising performance in recent studies. To avoid the problem of local minima, MMC can be solved globally via convex semi-definite programming (SDP) relaxation. Although many efficient approaches have been proposed to alleviate the computational burden of SDP, convex MMCs are still not scalable for medium data sets. In this paper, we propose a novel convex optimization method, LG-MMC, which maximizes the margin of opposite clusters via “Label Generation”. It can be shown that LG-MMC is much more scalable than existing convex approaches. Moreover, we show that our convex relaxation is tighter than state-of-art convex MMCs. Experiments on seventeen UCI datasets and MNIST dataset show significant improvement over existing MMC algorithms.
منابع مشابه
Efficient Maximum Margin Clustering via Cutting Plane Algorithm
Maximum margin clustering (MMC) is a recently proposed clustering method, which extends the theory of support vector machine to the unsupervised scenario and aims at finding the maximum margin hyperplane which separates the data from different classes. Traditionally, MMC is formulated as a non-convex integer programming problem and is thus difficult to solve. Several methods have been proposed ...
متن کاملLatent Maximum Margin Clustering
We present a maximum margin framework that clusters data using latent variables. Using latent representations enables our framework to model unobserved information embedded in the data. We implement our idea by large margin learning, and develop an alternating descent algorithm to effectively solve the resultant non-convex optimization problem. We instantiate our latent maximum margin clusterin...
متن کاملMaximum Margin Clustering
We propose a new method for clustering based on finding maximum margin hyperplanes through data. By reformulating the problem in terms of the implied equivalence relation matrix, we can pose the problem as a convex integer program. Although this still yields a difficult computational problem, the hard-clustering constraints can be relaxed to a soft-clustering formulation which can be feasibly s...
متن کاملModified Convex Data Clustering Algorithm Based on Alternating Direction Method of Multipliers
Knowing the fact that the main weakness of the most standard methods including k-means and hierarchical data clustering is their sensitivity to initialization and trapping to local minima, this paper proposes a modification of convex data clustering in which there is no need to be peculiar about how to select initial values. Due to properly converting the task of optimization to an equivalent...
متن کاملConvex formulations of radius-margin based Support Vector Machines
We consider Support Vector Machines (SVMs) learned together with linear transformations of the feature spaces on which they are applied. Under this scenario the radius of the smallest data enclosing sphere is no longer fixed. Therefore optimizing the SVM error bound by considering both the radius and the margin has the potential to deliver a tighter error bound. In this paper we present two nov...
متن کامل